چرایی و چگونگی آموزش نانوفناوری در مدارس

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی آموزش شیمی، دانشگاه فرهنگیان، پردیس علامه امینی تبریز، ایران

2 کارشناس نظارت بر مراکز پیش دبستانی، اداره کل آموزش و پرورش، همدان، ایران

چکیده

نانوفناوری یک رشته جدید نیست، بلکه علمی بین رشته­ ای است که با سایر علوم مانند فیزیک، شیمی، دارویی، انرژی و... ارتباط تنگاتنگی دارد. با ظهور نانو فناوری، علاوه بر انقلابی که در جهان ایجاد شد، هیاهویی در نظام­های آموزش کشورهای دنیا به­ وجود آورد تا افراد متخصص را در این زمینه تربیت کنند. گسترش استفاده از فناوری نانو در شاخه های مختلف صنعتی، پزشکی، الکترونیک، کشاورزی و بهداشت، نظام­های آموزشی را بر آن می­دارد تا با ارائه مفاهیم و سرفصل­های مربوط به نانو، مواد و کاربردهای آن، آگاهی دانش آموزان را در این زمینه علمی افزایش دهند. بنابراین لازم است علوم ارائه شدنی در مدارس به­ روز بشوند و علوم و فناوری نانو به صورت منسجم در آن گنجانیده شود تا نسل­ها و نیروی کار آینده، مسئولانه تصمیمات علمی بگیرند. از جمله مزیت­های علوم نانویی با دیگر علوم، قادر ساختن دانش آموزان و دانشجویان به درک و ارتباط بهتر بین علوم است. در این مقاله چرایی و چگونگی آموزش نانوفناوری در مدارس مورد بررسی قرار می­ گیرد. روش مورد مطالعه، جست وجو در پایگاه­های اطّلاعاتی فارسی و انگلیسی و بررسی مقالات، کتب و پایان نامه­ های مرتبط با نانوفناوری و آموزش آن می­ باشد. در پایان نتایج حاصل از آموزش نانوفناوری در مدارس بیان می­ گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Why and how to teach nanotechnology in secondary schools

نویسندگان [English]

  • Amir Mohammad Bahrami Maddah 1
  • Zohre Serkan 2
1 Master student of chemistry, Farhangian University, Tabriz, Iran
2 Expert in supervision of preschool centers, General Directorate of Education, Hamadan, Iran
چکیده [English]

Nanotechnology is not a new field, but it is an interdisciplinary topic closely related to other branches of knowledge including physics, chemistry, medicine, energy, etc. Beside the revolution it created across the globe, the emergence of nanotechnology deeply influenced the education systems of the countries around the world so that they could train experts in this field. The expansion of the use of nanotechnology in various branches of industry, medicine, electronics, agriculture, and health, prompts educational systems to raise the students’ awareness in this field by providing concepts and topics related to nanomaterials and their applications. Therefore, it is necessary to update the science taught at schools and integrate science and nanotechnology in a coherent way so that future generations and the workforce can make responsible scientific decisions. Among the advantages of nanosciences over the other sciences is to enable students to better understand and communicate among braches of science. In this article, nanotechnology and the necessity and principles of its education in schools are emphasized. The study method is searching in Persian and English databases and reviewing articles, books, and the sources related to nanotechnology and its education. Finally, the results of teaching nanotechnology at schools are stated.

کلیدواژه‌ها [English]

  • Nanotechnology
  • educational principles
  • teaching nanotechnology
  • Science
  • microscope
Alford, K., Calati, F., Clarke, A. (2009). Creating a spark for australian science through integrated nanotechnology studies at St. Helena secondary college. Journal of Nano Education, 1, 68–74.
Azamat, J. (2023). The role of research and innovation in developing chemistry education. Research in Chemistry Education5(3), 1-2. doi: 10.48310/chemedu.2023.3197
 
Amory, A., Naicker, K., Vincent, J., Adams, C. (1999). The use of computer games as an educational tool: Identification of appropriate game types and game elements, British Journal of Educational Technology, 30, 311–321.
Antti, L. (2010). An analysis of the educational significance of nanoscience and nanotechnology in scientific and technological literacy. Science Education International, 21, 160-175.
Barab, S., Thomas, M., Dodge, T., Carteaux, R., Tuzun H. (2005). Making learning fun: Quest Atlantis, a game without guns. Educational Technology Research and Development, 53, 86–107.
Betz, J. A. (1995). Computer games: Increase learning in an interactive multidisciplinary environment. Journal of Educational Technology Systems, 24, 195–205.
Blumenfeld, P. C., Soloway, E., Marx, R. W. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26, 369–398.
Bryan, L. A., Magana, A., Sederberg, D. (2015). Review of published research on pre-college students’ and teachers’ nanoscale science, engineering, and technology learning. Nanotechnology Reviews, 4, 7–32.
Drane, D., Swarat, S., Light, G. (2009). An evaluation of the efficacy and transferability of a nanoscience module. Journal of Nano Education, 1, 8–14.
Foley, T. E. (2006). Assessing the need for nanotechnology education reform in the United States. Nanotechnology Law & Business, 3, 476–484.
Fonash, S.J. (2001). Education and training of the nanotechnology workforce. Journal of Nanoparticle Research, 3, 79-82.
Frens, G. (1973). Controlled nucleation for regulation of particle size in monodisperse gold suspensions. Nature Physical Science, 241, 20–22.
Harmer, A.J, Columba, L. (2010). Engaging middle school students in nanoscale science, nanotechnology, and electron microscopy. Journal of Nano Education, 2, 91–101.
Huang, C.Y., Hsu, L.R., Chen, H.C. (2011). A study on the core concepts of nanotechnology for the elementary school. Journal of National Taichung University: Mathematics. Science & Technology, 25, 1–22.
Jeremy, V.E. (2009). Nanotechnology education: Contemporary content and approaches. Journal of technology studies, 35, 3-8.
Jones, G., Taylor, A., Minogue, J., Broadwell, B., Wiebe, E. Carter, G. (2007). Understanding scale: Powers of ten. Journal of Science Education and Technology, 16, 191–202.
Knobel, M., Murriello, S. (2010). The perception of nanoscience and nanotechnology by children and teenagers. Journal of Material Education, 32, 29–38.
Lin, S. Y., Wu, M. T. (2015). The effectiveness of a popular science promotion program on nanotechnology for elementary school students in I-Lan City. Research in Science & Technological Education, 33, 22–37.
McFarland, A. D., Haynes, C. L., Mirkin, C. A., Van Duyne, R. P., Godwin, H. A. (2004). Color my nanoworld. Journal of Chemical Education, 81, 544A-544B.
Meyyappan, M. (2004). Nanotechnology education and training. Journal of Material Education, 6, 311–320.
Moosvi Fazel, V., Kumar, A. (2014). Laboratory research motivated chemistry classroom activity to promote interests among students towards science. Journal of Nano Education, 6, 25–29.
Nadira, I.G., Jeffrey, S.C. (2012), Integrating nanotechnology into school education: a review of the literature. International Journal of Science Education, 30, 271-284.
Planinsic, G., Kovac, J. (2008). Nano goes to school: A teaching model of the atomic force microscope. Physics Education, 43, 37–45.
Rieber, L. P. (1995). A historical review of visualization in human cognition. Educational Technology Research and Development, 43, 45–56.
Roco, M. C. (2006). Nanotechnology’s Future. Scientific American, 293, 39.
Saidi, T., Sigauke, E. (2017). The use of museum based science centres to expose primary school students in developing countries to abstract and complex concepts of nanoscience and nanotechnology. Journal of Science Education and Technology, 26, 470–480.
Sweeney, A. E. (2006). Social and ethical dimensions of nanoscale science and engineering research. Science and Engineering Ethics, 12, 435–464.
Tretter, T., Jones, G., Andre, T., Negishi, A.(2006). Conceptual Boundaries and Distances: Students’ and Experts’ Concepts of the Scale of Scientific Phenomena. Journal of Research in Science Teaching, 43, 282–319.