Bybee, R. W. (2014). The BSCS 5E Instructional Model: Personal reflections and contemporary implications. Science & Children, 051 (April/May), 10−13.
Burmeister, M.; Rauch, F.; Eilks, I. (2012). Education for sustainable development (ESD) and secondary chemistry education. Chemistry Education Research and Practice, 13, 59−68.
Cooper, M. M.; Underwood, S. M.; Hilley, C. Z.; Klymkowsky, M. W. (2012). Development and assessment of a molecular structure and properties learning progression. Journal of Chemical Education, 89, 1351−1357.
Duit, R. (2015). Didaktik. In R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 325-327). Dordrecht: Springer.
Fensham, P. J. (2000). Providing suitable content in the ‘science for all’ curriculum. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education (pp. 147–164). Buckingham: Open University Press.
Gundem, B. (2000). Understanding European didactics. Routledge International Companion to Education; Routledge: London, pp 235−262.
Hogstad, K. H. (2021). Is (it) time to leave eternity behind? Rethinking Bildung’s implicit temporality. Journal of Philosophy of Education, 55, 589-605.
John, P. D. (2006). Lesson planning and the student teacher: Re-thinking the dominant model. Journal of Curriculum Studies, 38, 483−498.
Johnson, P., Tymms, P. (2011). The Emergence of a learning progression in middle school chemistry. Journal of Research in Science Teaching, 48, 849−877.
Johnstone, A. H. (1982). Macro- and Microchemistry. School Science Review, 64, 377−379.
Kansanen, P. (2009). Subject-matter didactics as a central knowledge base for teachers, or should it be called pedagogical content knowledge? Pedagogy, Culture & Society, 17, 29-39.
Lawson, A. E.; Karplus, R. (2002). The learning cycle. In A Love of Discovery; Fuller, R. G., Ed.; Springer: Dordrecht, pp 51−76.
Mahaffy, P. (2004). The future shape of chemistry education. Chemistry Education Research and Practice, 5, 229−245.
Marks, R., Eilks, I. (2009). Promoting scientific literacy using a sociocritical and problem-oriented approach to chemistry teaching: Concept, examples, experiences. International Journal of Environmental and Science Education, 4, 131−145.
Murphy, K., Holme, T., Zenisky, A., Caruthers, H., Knaus, K. (2012). Building the ACS exams anchoring concept content map for undergraduate Chemistry Education Research and Practice, 89, 715−720.
Roberts, D. A. (2007). Scientific Literacy/Science Literacy. In Handbook of Research on Science Education; Abell, S. K., Lederman, N. G., Eds.; Lawrence Erlbaum: Mahwah, pp 729−780.
Sjöström, J. (2019). Didactic Modelling for Socio-Ecojustice, Journal for Activist Science and Technology Education, 10, 46-56.
Sjöström, J. (2022). Didactic Modelling llustrated by sustainability teaching arrangements in preschool. Educare, 5, 249-280.
Sjöström, J. (2018). Science teacher identity and eco-transformation of science education: comparing Western modernism with Confucianism and reflexive Bildung. Cultural Studies of Science Education, 13, 147-161.
Sjostrom, J. (2013). Towards Bildung-oriented chemistry education. Science & Education, 22, 1873−1890.
Sjostrom, J., Eilks, I. (2018). Reconsidering different visions of scientific literacy and science education based on the concept of Bildung. In Cognition, Metacognition, and Culture in STEM Education; Dori, Y., Mevarech, Z., Baker, D., Eds.; Springer: Dordrecht, pp 65−88.
Sjostrom, J, Eilks, I, and Talanquer, V (2020). Didaktik Models in Chemistry Education, Journal of Chemistry Education, 97, 910−915.
Sjostrom, J., Frerichs, N., Zuin, V. G., Eilks, I. (2017). Use of the concept of Bildung in the international science education literature, its potential, and implications for teaching and learning. Studies in Science Education, 53, 165−192.
Stevens, S.; Delgado, C.; Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47, 687−715.
Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of structure of matter. International Journal of Science and Mathematics Education, 31, 2123−2136.
Wickman, P.-O. (2014). Teaching-learning progressions: An international perspective. In N. G. Lederman & S. K. Abell (Eds.), Handbook of Research on Science Education (pp. 145-163), 2nd ed., New York: Routledge.
Wickman, P.-O., Hamza, K., & Lundegard, I. (2018). Didaktik och didaktiska modeller för undervisning i naturvetenskapliga ämnen [Didaktik and didaktik models in science education]. NorDiNa: Nordic Studies in Science Education, 14, 239–249.
Zierer, K.; Seel, N. M. (2012). General Didactics and Instructional Design: eyes like twins: a transatlantic dialogue about similarities and differences, about the past and the future of two sciences of learning and teaching. Springer Plus, 1 (1), 15