مدل‌های دیداکتیک در خدمت آموزش شیمی

نوع مقاله : مقاله مروری

نویسنده

گروه شیمی، دانشگاه فرهنگیان، تهران، ایران

چکیده

مدل‌های دیداکتیک برای نشان دادن تصمیمات و اقداماتی که مربیان شیمی در مورد چرایی، چیستی، چگونگی و زمان تدریس محتوای خاص یا اجرای یک فعالیت آموزشی خاص انجام می‌دهند، بکار می‌روند؛ بنابراین برای مربیان شیمی بسیار مهم است که انواع مدل‌هایی را که کارشان را هدایت می‌کنند، بشناسند و در مورد آن‌ها تأمل کنند. از این رو در این تعدادی از مدل‌های آموزشی که بیشتر مبتنی بر سه‌گانه‌های شیمی (چه، چرا و چگونه) و (معلم، فراگیر و محتوا) هستند، معرفی شده است و کاربرد آن‌ها در آموزش شیمی مورد بررسی، توصیف، تحلیل قرار گرفته است. مدل‌هایی که در این مقاله بررسی شده است شامل مدل‌های مبتنی بر محتوا، مدل‌های مبتنی بر مرتبط بودن، مدل‌های مبتنی بر توالی، مدل‌های مبتنی بر رویکرد، مدل‌های مبتنی بر برنامه درسی و مدل‌های مبتنی بر تحلیل و بازتاب است. بررسی این نوع مدل‌ها توجه و اقدامات مربیان شیمی را هنگام طراحی برنامه‌های درسی، برنامه‌ریزی برای آموزش یا ارزیابی فرآیند یادگیری جهت‌دهی می‌کند. این مدل‌های آموزشی از اجرای شیوه‌های آموزشی مبتنی بر تحقیق پشتیبانی می‌کنند و برای توسعه حرفه‌ای مربیان مفید هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Didactic models in the service of chemistry education

نویسنده [English]

  • Mahshid Golestaneh
Department of Chemistry, Farhangian University, Tehran, Iran
چکیده [English]

Didactik models are used to illustrate the decisions and actions that chemistry educators make about Why, What, How, and When to teach a specific content or implement a specific educational activity. It is important for chemistry educators to recognize and reflect on the types of models that guide their work. Therefore, in this research, a number of didactik models that are mostly based on the chemistry triangle (What, Why, and How) and (Teacher, Learner, and Content) is introduced and their applications in chemistry education is analyzed. The models reviewed in this article include content models, relevance models, sequence models, practice models, curriculum models, analysis and reflection models. Examining these types of models directs our attention and actions when designing curricula, planning for teaching, or evaluating the learning process. These didactik models support the implementation of research-based instructional practices and are useful for the professional development of teachers.

کلیدواژه‌ها [English]

  • Didactik models
  • Chemistry education
  • Curriculum
  • Professional development
Bybee, R. W. (2014). The BSCS 5E Instructional Model: Personal reflections and contemporary implications. Science & Children, 051 (April/May), 10−13.
Burmeister, M.; Rauch, F.; Eilks, I. (2012). Education for sustainable development (ESD) and secondary chemistry education. Chemistry Education Research and Practice, 13, 59−68.
Cooper, M. M.; Underwood, S. M.; Hilley, C. Z.; Klymkowsky, M. W. (2012). Development and assessment of a molecular structure and properties learning progression. Journal of Chemical Education, 89, 1351−1357.
Duit, R. (2015). Didaktik. In R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 325-327). Dordrecht: Springer.
Fensham, P. J. (2000). Providing suitable content in the ‘science for all’ curriculum. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education (pp. 147–164). Buckingham: Open University Press.
Gundem, B. (2000). Understanding European didactics. Routledge International Companion to Education; Routledge: London, pp 235−262.
Hogstad, K. H. (2021). Is (it) time to leave eternity behind? Rethinking Bildung’s implicit temporality. Journal of Philosophy of Education, 55, 589-605.
John, P. D. (2006). Lesson planning and the student teacher: Re-thinking the dominant model. Journal of Curriculum Studies, 38, 483−498.
Johnson, P., Tymms, P. (2011). The Emergence of a learning progression in middle school chemistry. Journal of Research in Science Teaching, 48, 849−877.
Johnstone, A. H. (1982). Macro- and Microchemistry. School Science Review, 64, 377−379.
Kansanen, P. (2009). Subject-matter didactics as a central knowledge base for teachers, or should it be called pedagogical content knowledge? Pedagogy, Culture & Society, 17, 29-39.
Lawson, A. E.; Karplus, R. (2002). The learning cycle. In A Love of Discovery; Fuller, R. G., Ed.; Springer: Dordrecht, pp 51−76.
Mahaffy, P. (2004). The future shape of chemistry education. Chemistry Education Research and Practice, 5, 229−245.
Marks, R., Eilks, I. (2009). Promoting scientific literacy using a sociocritical and problem-oriented approach to chemistry teaching: Concept, examples, experiences. International Journal of Environmental and Science Education, 4, 131−145.
Murphy, K., Holme, T., Zenisky, A., Caruthers, H., Knaus, K. (2012). Building the ACS exams anchoring concept content map for undergraduate Chemistry Education Research and Practice, 89, 715−720.
Roberts, D. A. (2007). Scientific Literacy/Science Literacy. In Handbook of Research on Science Education; Abell, S. K., Lederman, N. G., Eds.; Lawrence Erlbaum: Mahwah, pp 729−780.
Sjöström, J. (2019). Didactic Modelling for Socio-Ecojustice, Journal for Activist Science and Technology Education, 10, 46-56.
Sjöström, J. (2022). Didactic Modelling llustrated by sustainability teaching arrangements in preschool. Educare, 5, 249-280.
Sjöström, J. (2018). Science teacher identity and eco-transformation of science education: comparing Western modernism with Confucianism and reflexive Bildung. Cultural Studies of Science Education, 13, 147-161.
Sjostrom, J. (2013). Towards Bildung-oriented chemistry education. Science & Education, 22, 1873−1890.
Sjostrom, J., Eilks, I. (2018). Reconsidering different visions of scientific literacy and science education based on the concept of Bildung. In Cognition, Metacognition, and Culture in STEM Education; Dori, Y., Mevarech, Z., Baker, D., Eds.; Springer: Dordrecht, pp 65−88.
Sjostrom, J, Eilks, I, and Talanquer, V (2020). Didaktik Models in Chemistry Education, Journal of Chemistry Education, 97, 910−915.
Sjostrom, J., Frerichs, N., Zuin, V. G., Eilks, I. (2017). Use of the concept of Bildung in the international science education literature, its potential, and implications for teaching and learning. Studies in Science Education, 53, 165−192.
Stevens, S.; Delgado, C.; Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47, 687−715.
Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of structure of matter. International Journal of Science and Mathematics Education, 31, 2123−2136.
Wickman, P.-O. (2014). Teaching-learning progressions: An international perspective. In N. G. Lederman & S. K. Abell (Eds.), Handbook of Research on Science Education (pp. 145-163), 2nd ed., New York: Routledge.
Wickman, P.-O., Hamza, K., & Lundegard, I. (2018). Didaktik och didaktiska modeller för undervisning i naturvetenskapliga ämnen [Didaktik and didaktik models in science education]. NorDiNa: Nordic Studies in Science Education, 14, 239–249.
Zierer, K.; Seel, N. M. (2012). General Didactics and Instructional Design: eyes like twins: a transatlantic dialogue about similarities and differences, about the past and the future of two sciences of learning and teaching. Springer Plus, 1 (1), 15