Comparison of chemistry curriculum in the educational systems of Iran and the United Kingdom

Document Type : Original research

Authors

1 Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

2 Chemistry Teacher, Education Department of Bavi County, Khuzestan, Iran

3 Chemistry Teacher, Education Department of Gotvand County, Khuzestan, Iran

Abstract

This research examines and compares the chemistry curriculum in the educational systems of Iran and the United Kingdom. The research method employed is descriptive-analytical and comparative. Science education is one of the significant learning domains in Iran and the United Kingdom, with chemistry being a part of it. The research findings indicate that compulsory science education continues from ages 6 to 18 in Iran and ages 5 to 16 in the United Kingdom. However, students in the UK are encouraged to continue their education until age 18. In the United Kingdom, science is taught as an integrated subject until the end of secondary education (age 16), while in Iran, it is taught until the end of lower secondary education (age 15). Chemistry is taught as a separate subject in upper secondary education in Iran and at the upper secondary level in the United Kingdom. Unlike Iran, where specific scientific content is mandated, the UK curriculum focuses on main concepts and principles without mandating specific educational materials, textbooks, or resources, providing teachers with the freedom to organize their teaching as it seems appropriate. The research results show that the chemistry concepts in the Iranian curricula and the United Kingdom have many similarities; however, the Iranian curricula include more extensive chemistry concepts and more complex numerical calculations compared to the United Kingdom. The UK chemistry curriculum is designed to meet the needs of students as informed citizens.

Keywords


حبیبی، لیلا؛ صباغیان، مریم؛ امام‌جمعه، محمدرضا (1396). مطالعه تطبیقی آموزش شیمی سبز دربرنامه درسی مدارس متوسطه (ایران و چهار کشور پیشرفته). نوآوری‌های آموزشی، 18،14-33
عرب زاده، امیرحسین؛ امینی، یادگار (1397). مقایسه برنامه درسی آموزش شیمی دوره دوم متوسطه در ایران، استرالیا و کره جنوبی. دهمین کنفرانس آموزش شیمی ایران، تهران، ایران.
فتحی واجارگاه، کورش؛ ملکی، حمید (1391). مفهوم‌پردازی نسبت میان دو نظام آموزش‌وپرورش عمومی و آموزش عالی در کشورهای منتخب جهان: رویکردی تطبیقی. مدیریت و برنامه‌ریزی در نظام‌های آموزشی، 5(9)، 33-9.
گلستانه، مهشید (1398). مقایسه تطبیقی برنامه درسی آموزش شیمی دانشگاه فرهنگیان با دبیری شیمی سابق و کارشناسی شیمی. پژوهش در آموزش شیمی، 1(2), 61-82.
گلستانه، مهشید (1399). لزوم بازنگری در درس‌های شیمی پایه دوره کارشناسی برای عبور از چالش‌های جهانی با الهام از همه‌گیری کووید- 19. پژوهش در آموزش شیمی، 2(4)، 41-58.
Brennan, V. K. (2021). Devising a unique model for science outreach programmes with critical engagement from teachers across the 5-19 age range. Liverpool John Moores University (United Kingdom).
Coe, R., Searle, J., Barmby, P. (2008). Relative difficulty of examinations in different subjects. Durham: CEM centre.
Gibney, D. (2018). Towards an ideal chemistry curriculum. School Science Review, 100(370), 30-5.
Hampden-Thompson, G., Lubben, F., Bennett, J. (2011). Post-16 physics and chemistry uptake: combining large-scale secondary analysis with in-depth qualitative methods. International Journal of Research & Method in Education34(3), 289-307.
Kabita, D. N., & Ji, L. (2017). The why, what and how of Competency-Based Curriculum reforms: The Kenyan experience. Nairobi, Kenya: IBE-UNESCO.
Kind, V. (2010). Basic Structure of the Educational System. Teaching Chemistry around the World, 375-390.
Matlin S. A., Mehta G., Hopf H., Krief A. (2016). One-World Chemistry and Systems Thinking, Nat. Chem., 8 (5), 393−398.
Mbonyiryivuze, A., Kanamugire, C., Yadav, L. L. (2018). Reforms in science curricula in last six decades: Special reference to physics. African Journal of Educational Studies in Mathematics and Sciences14, 153-165.
Meltzer, D. E., Otero, V. K. (2015). A brief history of physics education in the United States. American Journal of Physics, 83 (5).
Millar, R. (2011). Reviewing the National Curriculum for science: Opportunities and challenges. Curriculum Journal, 22(2), 167-185.
Mohan, R. (1995). Innovative science teaching for physical science teachers. New Delhi: Prentice-Hall of India.
Ojimba, D. P. (2013). Science education reforms in Nigeria: implications forscience teachers. Global Advanced Research Journal of Peace, Gender and Development Studies (GARJPGDS), 2 (5), 086-090.
Orpwood, G., & Barnett, J. (1997). Science in the National Curriculum: an international perspective. The Curriculum Journal8(3), 331-349.
Rose, J. (2009). Independent review of the primary curriculum london: Department for children, schools and Families. http://publications.teachernet.gov.uk/eOrderingDownload/Primary_curriculum_Report.pdf.
Russell, T., Qualter, A., & McGuigan, L. (1995). Reflections on the implementation of National Curriculum Science Policy for the 5‐14 age range: findings and interpretations from a national evaluation study in England. International Journal of Science Education17(4), 481-492.
Timss (2019). International results in mathematics and science. https://www.iea.nl/sites/default/files/2021-01/timss%202019-international-results-in-mathematics-and-science.pdf
Wallace, J., Louden, W. (1998). Curriculum change in science: Riding the waves of reform. In B. Fraser, & K. Tobin (Eds.), in International Handbook of Science Education (pp. 471-485). Dordrecht: Kluwer Academic Publishers.
Whitehouse, A. M., Moore, A., Cukurova, M. (2016). Twenty First Century Science GCSE Chemistry.
Wilson, F., Wade, N., & Evans, S. (2016) ‘Impact of changes to practical assessment at GCSE and A-level: The start of a longitudinal study by OCR’, School Science Review, 98(362), 119-128.